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Abstract. Soft errors are expected to increase as feature sizes shrink
and the number of cores increases. Redundant execution can be used to
cope with such errors. This paper deals with the problem of automat-
ically finding the number of redundant executions needed to achieve a
preset reliability threshold. Our method uses geometric programming to
calculate the minimal reliability for each instruction while still ensuring
that the reliability of the program satisfies a given threshold. We use
this to approximate an upper bound on the number of redundant in-
structions. Using this, we perform a limit study to find the implications
of different redundant execution schemes. In particular we notice that
the overhead of higher redundancy has serious implications to reliability.
We therefore create a scheme where we only perform more executions if
needed. Applying the results from our optimization improves reliability
by up to 58.25%. We show that it is possible to achieve up to 8% better
performance than Triple Modular Redundancy (TMR). We also show
cases where our approach is insufficient.

Keywords: High Performance Computing, Fault Tolerance, N-Modular
Redundancy, Reliability Optimization

1 Introduction

Technology trends like shrinking feature sizes and increasing numbers of proces-
sor cores on chip make transient faults in hardware increasingly common. These
transient faults manifest themselves as bit-flips, and they can originate from
external sources (e.g., radiation events) or internal sources (e.g., voltage drops,
power supply noise, or leakage). Such faults are termed soft errors because they
cause no permanent device damage.

As hardware increases in complexity, so does the software that runs on it.
Increased complexity results in increased error vulnerability at all levels of the
software stack. These problems affect all segments of computing, but they are
of particular concern for High Performance Computing (HPC) platforms that
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must continue to perform correctly in the presence of such faults. Architects have
long proposed hardware enhancements [1] to improve fault tolerance, but imple-
menting dedicated hardware solutions requires design and verification effort,
consumes chip real estate, and increases hardware complexity: at some point the
proposed solution itself becomes part of the problem. Furthermore, large-scale
supercomputers have historically been built from commodity parts not designed
for use at such scales; as such, they lack dedicated hardware support, and adding
it “after the fact” is difficult and impractical, if not impossible.

Scalable software solutions could become attractive alternatives, but soft-
ware approaches can incur high performance overheads. As with dedicated fault-
tolerant hardware solutions, the fault-tolerant software itself can potentially in-
troduce new errors, since it adds to the (growing) complexity of the application
software. To balance these tradeoffs, we study the problem of automatically in-
troducing fault tolerance in software to correct for hardware-induced faults.

Software-implemented hardware fault tolerance (SIHFT) typically relies on
adding some form of redundancy. This could entail re-executing instructions
when faults are detected (temporal redundancy) or executing multiple indepen-
dent instructions and adjudicating on their results (spatial redundancy) [15]. The
former approach is typically called checkpointing or replay, and HPC systems
have traditionally employed it at multiple levels (e.g., in both the OS and the
application). Engelmann et. al [2] argue that as the number of nodes increases,
system availability will decrease due to single node failures. Increasing the num-
ber of nodes also increases the time it takes to save and restore the state when
faults occur. The latter approach is termed N -modular redundancy, or NMR
(where N signifies the number of independent instructions). In both cases, the
amount of work a processing element needs to perform increases, which increases
the opportunities for incurring soft errors. An understanding of the tradeoffs be-
tween reliability and performance is necessary to make efficient use of hardware
resources while delivering a desired level of resilience.

To understand the motivation for automatically deducing N , consider a pro-
gram in which an instruction IX consumes the results produced by an instruction
IY . The probability that IX produces the correct result can be increased by either
hardening IX or IY . In particular, if executing IX comes at a lower performance
cost than executing IY , we may prefer to harden the former. In extending to even
more instructions, we need to consider how results propagate: producers with
more consumers need more protection. The typical approach to applying NMR
using a fixed number of redundant executions for all instructions neglects this
issue. If IX and IY are redundantly executed different numbers of times, then we
also need a means by which to decide how to propagate results when there are
fewer consumers than producers (or vice versa). Here we develop an automated
approach to determining an appropriate level of redundancy for each instruction
and leave the second problem of deciding the interconnection between producers
and consumers for future work. We therefore combine producer results before
consumer instructions need them.
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2 Related Work

Checkpointing has long been the standard approach to hardening HPC appli-
cations. Application and system state are periodically saved at dedicated nodes.
In the event of a crash, the application is rolled back to a committed state. Lu et.
al. [7] highlight the need to keep multiple checkpoint versions to deal with latent
errors: this lets them restart in a stable state from before an error was generated,
even if the time between occurrence and detection exceeds a single checkpoint
interval. The overheads of checkpoint/restart are expected to cause system uti-
lization to decrease rapidly as systems grow to exascale [3]. Researchers are
thus investigating a limited amount of modular redundancy, as it allows some
soft errors to be handled by a local node cluster, rather than invoking a global
restart [3–5]. These approaches use a static number of redundant executions.

Minimizing the performance impact of resilient code is naturally im-
portant to the HPC community. Shamsunder et. al. [6] consider the problem
of minimizing the number of assertion checks in a multiprocessor environment.
They use a CFG-like graph model to represent computation and find an efficient
algorithm for the case in which the number of faults is fixed. In contrast, our
approach uses a probabilistic description of whether an operation suffers a fault.
Misailovic et. al. [8] present an algorithm for replacing operations with less re-
liable versions while minimizing power consumption and maintaining a preset
reliability. Their approach uses a formulation of the optimization problem similar
to ours, but they use Integer Linear Programming (ILP) to solve it.

3 Approach

We want to generate code delivering a specified level of reliability while min-
imizing the performance costs of redundant execution. Our approach is based
on the duality between a program’s data flow and the probabilistic flow, or how
the probability of a state’s being correct increases/decreases as it is altered by
operations. All data-flow operations increase execution time. Similarly, in the
probabilistic interpretation, all non-ideal operations degrade the reliability of
producing a correct output. We restrict ourselves to cases where reliability and
performance is linearly related. By viewing the operations as constraints on the
probabilistic flow, we can find a solution that satisfies a reliability threshold
while minimizing performance overheads.

Let a program be represented by a control-flow graph (CFG) G = 〈V,E〉.
Each block v ∈ V is a sequence of binary (Iop(rD, rS , rT )) or unary (Iop(rD, rS))
operations over a finite state-space of non-overlapping symbols from a set R.
Informally, the semantics of a unary (binary) data-flow operation is that rD is
the destination symbol of an operation Iop on symbols rS (and rT ). We use
functions fV to map symbols rx to variables that symbolically represent the
probability that rx is correct.

Associated with all unary (binary) data-flow operations is a probability PIop
that Iop computes correctly given correct operands. Although one would gener-
ally expect this probability to change with the operand values, it is common to
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assume that the failure of the operation and its operands to be independent [10].
We denote the probability of successful execution prior to optimization as P initIop
which we refer to as the initial execution probability of Iop. The probability that
a binary operation Iop produces the correct result (for some fV ) is then given
by PIopf

V (rS)fV (rT ).

3.1 Optimization Problem

Algorithm 1 translates a program into a set of constraints that reflecting the
probability that the data flow is correct. The function newV ar() returns a fresh
variable and Constraint(op, vId, f

V , rD, S, C) adds a constraint of the form
1 = v−1Id PIop

∏
s∈S f

V (s) to C and maps rD to vId in fV . We refer to the value of
PIop following optimization as the optimal execution probability of Iop. The PIop
variables differ from the vx variables in that we associate a weight wop with the
former. The goal of the optimization process is to minimize

∑
i wiPIi subject

to the constraints generated by the algorithm: that each variable ∈ [0, 1] and
that the reliability of important symbols reach a predefined level P̂ . Such an
optimization problem is called a geometric programming problem.

Algorithm 1: OptGen — Constraint Generator

Input: G = 〈V,E〉 CFG
Input: fV

In - Total map from symbol to variable.
Output: C - Set of constraints.
fV
Map = {v 7→ fV

In|v ∈ V };
foreach v ∈ V do

fV = fV
Map(v);

foreach I ∈ v do
vId = newV ar();
case I is

Iop(rD, rS1, rS2)l ⇒ Constrain(op, vId, f
V , rD, {rS1, rS2}, C) ;

Iop(rD, rS) ⇒ Constrain(op, vId, f
V , rD, {rS}, C) ;

fV (rD) = vId;

Let c > 0, xi ∈ R+ and ai ∈ R then gk(x) = c
∏
i x

ai
i is a mononomial

function. Similarly fj(x) =
∑
i gi(x) is a posynomial function. A geometric

programming (GP) problem in standard form is given by:

minf0(x)s.t. (∀j ∈ [1,m] : fj(x) ≤ 1) ∧ (∀k ∈ [1, p] : gk(x) = 1)

GP problems can be transformed into a convex equivalent form by taking the
logarithm of all posynomials. The resulting functions are called log-sum-exp
functions (i.e., y = log(

∑
i e
x
i )). Off-the-shelf solvers [9] can find the minimum

of a GP problem in convex form efficiently even for large numbers of variables.
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Note that the convex form of a GP problem of only monomial functions, as in
our case, is a linear programming problem.

As an example, consider the CFG in Figure 3.1. Variables {vR0
, vR1

, vR2
, vR3

, vR4
}

denote the probability that symbol R0, R1, R2, R3 and R4, respectively, is correct
at the entry of a block. The corresponding GP problem is given to the right. We
add constraints that symbols that have been updated in the block reach a prob-
ability of correctness of at least P̂ . We find the necessary number of redundant
instructions (with initial and optimal execution probabilities pi and po, respec-

tively) by finding the lowestN = 2n+1 such that po ≤
∑N
j=n+1

(
N
j

)
pji (1−pi)N−j ,

assuming majority voting as the adjudication mechanism.

00 : I1(R2, R2, R2)
01 : I4(R3, R1, R2)
02 : I1(R3, R3, R3)
03 : I2(R4, R1, R3)
04 : I4(RPC,R3,#05a)

BB1

05a : I5(R4, R1)

BB2a

05b : I0(R1, R1, R2)

BB2b

06 : I2(R1, R1, R4)
07 : I4(R1, R1, R3)

BB3

min w
T

Pop

s.t. v00 = Pop(0)vR2
vR2

1 = v
−1
01 Pop(1)vR1

v00

1 = v
−1
02 Pop(2)v01v01

1 = v
−1
03 Pop(3)vR1

v02

1 = v
−1
04 Pop(4)v02

1 ≥ v
−1
01 P̂

1 ≥ v
−1
03 P̂

1 ≥ v
−1
04 P̂

1 = v
−1
05aPop(5a)vR1

1 ≥ v
−1
05aP̂

1 = v
−1
05b

Pop(5b)vR1
vR2

1 ≥ v
−1
05b

P̂

1 = v
−1
06 Pop(6)vR1

vR4

1 = v
−1
07 Pop(7)v06vR3

1 ≥ v
−1
07 P̂

v∗ ≤ 1

Pop(∗) ≤ 1

∀i : 1 ≥ P
−1
op(i)

P
init
op(i)

Fig. 1. Example CFG and Corresponding GP Optimization Problem

3.2 1.mn Voter

The number of redundant executions our approach recommends can be quite
high if P̂ is high and/or Pop is low. As these numbers may represent pessimistic
estimates of the number of situations where faults occur, we introduce a voter
system that adds redundant executions as needed.

The voting system consists of n stages (for some n ∈ N − {0}). Each stage
includes a sequence of redundant executions followed by an assertion that tries to
establish whether more redundant executions are needed. The voting system is
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shown in pseudo-code in Listing 1.1. In the first stage, we execute m+1 versions
(from some even m > 0). We compare these m+1 results using a parity function
that is zero iff an even number of operands are ones. If this happens, we vote on
the result. Otherwise, we replace the result of the first version with the vote of
all results in the first stage and perform m more executions in a second stage.
This process then repeats. We do this for a maximum of n stages. We refer to
this voter system as the 1.mn voter.

Listing 1.1. 1.mn Voter System
x [ 1 ] = f ( . . . )
. . .
x[1+m] = f ( . . . )
IF (PARITY(x [ 1 ] , . . . , x[1+m] ) = 0)

r e s = VOTE(x [ 1 ] , . . . , x[1+m] )
ELSE {

x [ 1 ] = VOTE(x [ 1 ] , . . . , x[1+m] )
x [ 2 ] = f ( . . . )
. . .
x[1+m] = f ( . . . )
IF (PARITY(x [ 1 ] , . . . , x[1+m] ) = 0)

. . .
ELSE

. . .
}

4 Evaluation

To evaluate the benefits of our approach, compared to assigning a fixed number
of redundant executions, we use six matrix kernels as listed in Table 1. We choose
the kernels to show benefits and weaknesses of our approach rather than based
on application domain.

Name Description Matrix Size
Approx-log Approximates the logarithm of fix-point numbers in the range [0,1] 5×5
Determinant Computes the determinant by Laplace expansion recursively 5×5
Gaussian Implements convolution with a 9×9 Gaussian smoothing kernel 10×10
Bubblesort Implements Median filtering using 3×3 bubblesort sorting network 10×10
Mincomp Implements Median filtering using 3×3 minimum comparison sorting network 10×10
Mintime Implements Median filtering using 3×3 minimum time sorting network 10×10

Table 1. Evaluation Kernels

4.1 Experimental Setup

In our experiments we use the gem5 simulator [14] to model an in-order 32-bit
MIPS processor. We modify the simulator to include a pseudo-random number
generator for flipping bits in the inputs of the integer ALU in the execution
stage. Faults are only injected into instructions that belong to the application.
Instructions belonging to the operating system or run-time are ignored. Instruc-
tions that do not involve ALU units (e.g., memory load/store or moving data
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between registers) are considered ideal. The reason for this assumption is that
effective hardware fault-tolerance methods exist for these cases (e.g., redundant
buses or error-correcting codes).

The random variable controlling which ALU unit to zap is exponentially dis-

tributed with the unit’s normalized area and a constant λk (i.e., 1−e−λk
Areaunit
AreaALU ).

The flip probability of each unit is given in Table 3. The initial successful execu-
tion probabilities, P initIop

, similarly use the probability of the ALU unit they use.
We vary the constant among experiments to conduct a limit study. Which input
bit to flip (of an ALU unit) is uniformly distributed. To obtain area numbers we
synthesize an in-house MIPS implementation with the Synopsys Design Compiler
using a commercial 65 nm low-power process technology. This implementation
models a five-stage MIPS R2000-like processor.

Accessing pages that have not been allocated makes the OS terminate the
process. This is a common case when injecting faults [15]. To make sure this
does not happen, we change the gem5s virtual memory system so that pages
are allocated before we read/write memory. Reading from an invalid memory
address then returns a non-deterministic value. This concept has been called
failure-oblivous computing [16]. With these changes, an invalid memory access
can be handled with error-correction logic, as opposed to terminating execution.

4.2 Methodology

We compile our kernels with GCC 4.0.03 and optimization level 0 (-O0) to include
DWARF debugging information (-g). We analyze the binaries with ROSE [11]
to produce a GP problem as described in Section 3. We require that each 32-bit
register assigned in the block exit with a probability of at least P̂ =0.994. For
the sake of demonstration, we use unit weights for all ALU instructions except
for div/mul, for which we use 10 (since they are typically about an order of
magnitude higher in performance cost). We use CVX 2.0 beta [12, 13] in MAT-
LAB R2012 to solve the GP problem and return the resulting optimal execution
probabilities to ROSE. For each pair of initial and optimal execution probabil-
ities we approximate an upper bound on the number of redundant executions,
N , for each instruction. Since ROSE::FTTransform [15] operates on source code,
we use the DWARF sourceline-to-instruction address mapping to transfer this
number back to the source level. Since source lines map to multiple instructions,
we use the maximum N of all instructions that map to a particular source line.
We use a 1.2Ni voter for each source line, where Ni versions were recommended
if Ni > 1. For Ni = 1 we do not apply any transformation. Table 2 shows the
values of N for each kernel.

For each kernel we use ROSE::FTTransform to produce two sets of versions.
The first set contains the results of applying each kernel to a transformer where
we use 3MR, 5MR, and 7MR versions with majority voting. The second set

3 This particular toolchain is supported by gem5’s MIPS simulator in system-call
emulation mode.

4 We arbitrarily choose this value for the purposes of our limit study.
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λk

1.0 0.1 0.01

Name
∼
N N Values

∼
N N Values

∼
N N Values

Approx-Log 3 {1,3,7} 3 {1,3} 3 {1,3}
Determinant 3 {1,3,7,9,23} 3 {1,3,5,9} 3 {1,3}
Gaussian 31 {1,3,19,23,27,31} 13 {1,3,9,11,13} 9 {1,3,5,7,9}
Bubblesort 3 {1,3,5} 3 {1,3} 3 {1,3}
Mincomp 7 {1,3,7,9} 5 {1,3,5,7} 3 {1,3,5}
Mintime 7 {1,3,7,9,11} 5 {1,3,5,7} 3 {1,3,5}

Table 2. Distributions of N for All Source Lines of
Each Kernel

ALU Unit P(flip)
Add/Sub 1-0.998766
Mul/Div 1-0.953567
Comparator 1-0.999705
And 1-0.999799
Or 1-0.999778
Xor 1-0.999685
Nor 1-0.999852
Shift 1-0.998343

Table 3. Flip probabili-
ties for ALU units

uses a 1.2n voter, where n is set to {2,3,4} to produce versions called 1.2-2,
1.2-3, and 1.2-4. These two sets, the set of versions produced by our optimizer
(called OPT) and the original kernel (called Orig), collectively make up the
kernel versions considered in this work.

For each kernel version we then perform an experiment consisting of 2000
runs with λk ∈ {1, 0.1, 0.01}. We choose the values of λk such that reliability
results of the evaluations of the original kernel versions map to the range [0%,
100%]. Each run is classified as correct or incorrect. The incorrect class includes
runs that time out (meaning the kernel did not complete within one minute5), en-
counter miscellaneous errors (e.g., control-flow errors or invalid syscall requests),
and terminate with incorrect results (i.e., silent data corruptions). For each ex-
periment we use the percentage of runs that are classified as correct to measure
reliability. Similarly, for each correct run we also compute the median of the
number of executed CPU cycles (as reported by gem5) of all runs, which we use
to represent performance.

4.3 Results

Table 4 shows the reliability results for each version (rows) and each kernel/λk
(columns). As expected, results improve with decreasing λk. At λk = 0.01, 44.65-
84.4% of all runs using the original version complete with correct results. For
NMR versions, increasing N does not improve reliability in our evaluations. This
is due to the increased fault probability of the majority voter as N increases.
The number of clauses for N = 3, 5, and 7 is 3, 10, and 33, respectively. The
1.2n versions and the 3MR version thus achieve similar reliabilities. With the
exception of the Gaussian kernel, the versions produced by our approach achieve
among the best reliabilities for all experiments. We discuss the results of the
Gaussian kernel more in Section 5.

Table 5 shows execution performance results. An “-” entry indicates that no
execution terminated with correct results. Performance stays somewhat constant
over all λk for all versions except OPT. This is expected for the original and NMR
versions but surprising for the 1.2n versions. These results indicate that we tend
to end up in the the same stage independent of λk. The fact that performance

5 Normal program execution takes less then ten seconds for all kernels.
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Version Kernel
Approx-Log Determinant Gaussian

λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01
Orig 0% 29.85% 80.6% 0.2% 39.5% 84.4% 0% 0.6% 44.65%
3MR 4.2% 69.3% 92.05% 0.8% 56.4% 87.45% 2.2% 72.15% 92.0%
5MR 0.15% 34.7% 67.6% 0.35% 49.3% 82.4% 0% 36.15% 66.8%
7MR 0% 1.5% 21.8% 0.05% 23.1% 61.9% 0% 1.6% 20.15%
OPT 5.3% 69.9% 91.05% 1.1% 59.0% 90.75% 0% 0% 0%
1.2-2 3.4% 66.9% 90.25% 0.95% 55.9% 88.7% 4.4% 73.1% 91.95%
1.2-3 3.5% 67.4% 90.4% 1.2% 56.9% 89.25% 3.55% 74.95% 92.15%
1.2-4 3.7% 67.55% 90.5% 0.9% 59.2% 90.85% 4.9% 72.85% 91.3%

Version Kernel
Mincomp Mintime Bubblesort

λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01
Orig 0% 21.65% 76.3% 0% 25.25% 76.65% 0% 19.6% 73.2%
3MR 9.95% 79.95% 94.3% 11.45% 79.95% 94.4% 8.65% 77.45% 93.15%
5MR 1.45% 58.75% 83.6% 1.65% 58.25% 82.85% 0.45% 48.65% 77.45%
7MR 0% 18.45% 51.1% 0% 7.65% 38.75% 0% 8.3% 36.8%
OPT 12.95% 79.9% 94.35% 12.3% 79.45% 95.1% 9.9% 76.75% 92.6%
1.2-2 11.6% 81.5% 95.25% 11.45% 79.95% 95.2% 11.15% 75.15% 93.25%
1.2-3 12.95% 80.1% 94.15% 12.2% 80.45% 95.4% 10.85% 77.0% 92.85%
1.2-4 11.75% 78.2% 94.9% 12.2% 79.35% 95.3% 7.7% 75.4% 92.3%

Table 4. Reliability Results for Each Kernel Version at Each λk

cost decreases for OPT can be understood by looking at Table 2: the number
of executions used decreases for decreasing λk. These numbers should not be
used to evaluate the performance overhead of redundant execution. Our earlier
work [15] shows that we need to hide memory latencies to keep the overhead
low. This requires optimizations such as SIMDization and versioning to make
use of parallel resources.

Figure 2 shows the geometric means of the reliability and performance results
for all runs, excluding those of the Gaussian kernel. For each version, OPT
achieves marginally better reliability than the other resilient versions. At the
same time, if λk is sufficiently low, its performance can even be better then 3MR
(which indiscriminately adds redundancy in cases where our approach does not).
But for high λk the execution overhead is quite high.

Fig. 2. Geometric Mean of Reliability (left) and Performance (right) Results
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Version Kernel
Approx-Log Determinant Gaussian

λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01
Orig - 89380 89380 64198 63986 63986 - 107258 107192
3MR 226534 225818 225738 107406 106966 106900 313871 308869 308337
5MR 479330 478074 477918 200758 200898 200832 - 1913594 1912978
7MR - 2031302 2031017 421331 520667 520535 - 6223762 6223072
OPT 358369 219939 219859 419488 197007 101368 - - -
1.2-2 399996 398956 398862 159122 158592 158496 1304283 1297262 1296546
1.2-3 576538 575591 575501 207896 207761 207671 3158828 3153470 3152882
1.2-4 750603 750004 749956 255271 256290 256298 4197134 4194096 4193656

Version Kernel
Mincomp Mintime Bubblesort

λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01 λk=1.0 λk=0.1 λk=0.01
Orig - 124310 124310 - 135194 135194 - 178702 178702
3MR 2250657 2249985 2249901 2250653 2249989 2249901 3689882 3689220 3689136
5MR 6855928 6854958 6854864 6855988 6854958 6854866 9523724 9522746 9522652
7MR - 21741416 21741266 - 30197146 30197008 - 30197151 30197008
OPT 6959278 4671986 2078021 8224106 5503566 2890332 3727170 3266087 3266005
1.2-2 5231408 5233664 5233950 5247188 5249624 5249954 7188489 7190031 7190215
1.2-3 7674798 7686217 7687520 7714317 7726648 7728076 10515264 10525612 10526772
1.2-4 10053976 10080261 10082966 10131521 10157786 10160536 13786320 13811295 13813971

Table 5. Median CPU Cycles for Each Kernel Version at Each λk

5 Discussion

We have introduced an algorithm to minimize the number of redundant execu-
tions for instructions in a CFG. This algorithm considers both the reliability of
the instruction and its performance cost, and the surrounding framework repre-
sents a promising first cut at an automated solution. Nonetheless, we find that
our current algorithm can be overly conservative in that it calculates the max-
imum number of redundant executions, which may, in turn, degrade reliability.
For instance, in Section 4, the OPT version of the Gaussian kernel achieves a
0% reliability. This kernel makes heavy use of multiplication, which is our most
unreliable operation due to the area of the multiplier.

Looking at Table 4, we see that Gaussian is not very resilient. The reliability
at λk = 0.01 is comparable to that of the determinant kernel at λk = 0.1. Table 2
shows that our algorithm deduces that we need as many as 31 replications for
most of the statements in this kernel. The 1.mn voter that we introduce to cope
with high N does not have the desired effect in this case. Performing redundant
execution with just NMR, on the other hand, is not a feasible solution. The over-
head of majority voting when N increases is very high (for both performance and
reliability). This example highlights the need to consider not just the probability
of correct execution but also the uncertainty that we associate with this proba-
bility. When the uncertainty becomes too high, we could then include a limited
amount of replay (or other construct) to bring down the potential overhead.

We have not considered the case of optimizing performance/reliability over
the whole of an acyclic CFG (but rather over each basic block individually). For
this case we need to be able to combine contributions from mutually exclusive
control-flow paths. An affine join function could be used to achieve this, but
then we need to include posynomial equality constraints. Geometric program-
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ming does not allow posynomial equality constraints, in general. Allowing these
makes it a signomial programming [9] problem for which no efficient optimization
algorithm is known to exist.

Although we show benefits over 3MR, the improvements are marginal with
our current approach. Nonetheless, the fact that our approach considers more
variables makes it applicable to more complex environments, for instance where
only a subset of the instructions are faulty. We have not investigated such scenar-
ios because the current study has highlighted the importance of considering how
the uncertainty of our probabilistic flow calculations increases with the num-
ber of instructions in the section of the CFG we are targeting. In particular,
we have shown that schemes that only add redundant executions as needed can
outperform NMR schemes.

6 Conclusion

One problem in using a redundant execution scheme is how to find the number of
executions to use for each instruction. We show an algorithm for approximating
this number while taking into account performance costs. Our evaluations show
that it is possible to achieve good reliability while still minimizing performance
overheads. We improve reliability by up to 58% compared to the original versions
of our benchmarks. The median performance cost is up to 8% lower then triple
modular redundancy.

Our results vary considerably with the assumed probability of an instruction’s
successful execution. If this probability is low, we conservatively recommend a
high number of redundant versions. Adding more redundancy may be harmful,
since it gives the faulty environment more changes to alter the semantics of
the execution. Determining this probability is of course a big problem in itself.
Although our 1.mn voter relieves some of these problems, it does not represent a
general solution. Our results however show that reliability/performance improve
if we only execute versions as needed to cope with this uncertainty. We believe
a better optimization algorithm would factor this uncertainty into decisions.
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